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XVI. Of the Attraction of such Solids as are terminated by Planes;
and of Solids of greatest Attraction. By Thomas Knight, Esq.
Communicated by Sir H. Davy, LL.D. Sec. R. S. v

Read March 19, 1812.

J;\/IATHEMATICIANS, in treating of the attraction of bodies,
have confined their attention, almost entirely, to those solids
which are bounded by continuous curve surfaces; and Mr.
PrAYFAIR, if I do not mistake, is the only writer, who has
given any example of that kind of inquiry, which is the chief
object of the present paper. This learned mathematician has
found expressions* for the action of a parallelopiped ; and of
an isosceles pyramid, with a rectangular base, on a point at
its vertex ; and observes, on occasion of the first mentioned
problem, that what he has there done, « gives some hopes of
“ being able to determine generally the attraction of solids
« bounded by any planes whatever.”

It is this general problem, that I venture to attempt the
solution of, in what follows: viz. any solid, regular or irregular,
terminated by plane surfaces, being given, to find, both in quantity
and direction, its action, on a point, given in position, either within
or without it.

* Ed. Trans. Vol. VL. p. 228 to 243. It is proper however to observe, that Mr.
Prayrair’s expression, at p. 242, for the action of a parallelopiped, requires to have
its sign changed ; being, as it stands at present, negative, from the manner of cor-
recting the fluent,
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248 Mr. Kni6HT on the Atiraction of such Solids

Nor has the matter any difficulty, as far as theory* only is
concerned ; although, actually to find the attraction, of a body
of very complicated figure, may, no doubt, be exceedingly
Iaborious and troublesome: for no one, I suppose, will con-
ceive, that it can be done in any other manner, than by a pre-
vious partition into more simple forms, each of which must
have its action found separately.

Having completed this part of my subject in the three first
sections, I next apply the formulas, given in §. 1, to find the
attraction of certain complex bodies, which, though not bounded
by planes, have yet a natural connexion with the preceding
part of the paper. Finally, the fifth section treats, pretty fully,
of solids of greatest attraction, under various circumstances ;
and I do not know, that any one of the problems there given
has been before considered by mathematicians ; whilst, on the
other hand, the results of former writers are easily derived
as corollaries.

For the sake of perspicuity, I have divided the paper into
propositions, and shall terminate this short introduction by
cxpressing a hope, that I may not be chargeable with unne-
cessary prolixity.

§. L
Of the Attraction of Planes bounded by right Lines.

As all such ﬁgures may be divided into triangles, it seems
natural to begin with these.

* It is usual, I think, with mathematicians, to consider a thing as done, when it
can be pointed out how it may be done. Thus M. LaGcrANGE, in his excellent work
¢ De la Résolution des Equations numériques,” says (p. 43) ¢ cette méthode ne laisse,
¢¢ ce me semble, ricn & desirer.” where, of course, he can only mean, as far as relates
to theory.



as are terminated by Planes, &c. 249

Prop. 1.

Let rvm, fig. 1, be a triangle, right angled at r, and pm a
right line, perpendicular to the plane of the triangle, at the
angular point m; it is required to find the attraction of the
triangle, on the point p, both in quantity and direction.

Conceive a plane to pass through the point p, parallel to the
plane of the triangle, and, in it, the lines pg, po, respectively
parallel to rm, rv. The problem will be solved, if we find the
actions of the triangle, in the directions of the three rectan-
gular co-ordinates pm, pg, po.

Draw ks parallel to rv, and put ¢ == pm, b =rm, T=mk,
t=Xkq; then pq=v/a*4 1" -} 1*. Let r=tang. vmr, then
ks=rxkm.

The element of the plane at q is T x £, and its action, on p,

i

o k!
ting A, B, C for the actions of the triangle, in the directions
pm, pg, po, we get

aTt TT £
A= ‘/f AT e e ‘ff(a T
in all Wthh expressions, we must first take the fluent, with
respect to £, from ¢ = o, to t == r7T"; and afterwards, with re=
spect to T, from T'==o0, to T'==b. To begin with A,— a first
operation gives

in the direction pq, is —— by resolving which, and put-

A £k arTf'
@+ T*) (@*+(x +r")T’)‘?I-‘
which, if we put 8" =1 <4 7%, will be changed to

A = f arTT
B+ +T,)%'
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Put #*= + T*, whence T*= 2* —

substituting these values we get

A= f art = (because 1 ==7*) f—=2"

gt ‘a——“‘“) ,

B"’ TT,..... zz: by

(?"*T“)’

which, if we multiply both numerator and denominator by

B .
B}
el becomes f

L _
- == arc (tang. == -f—r %), and, by putting
g

for = and g their values, we have at last

*A = arc (tang. = -—\/ 14— I'” b*) — arc (tang. == ';-'\

In like manner, a first mtegratlon of B gives

B =f r 72T ] =f rT*T ,

(@+T?) (a*+ (1411 T?)= VIigrt (a*4T?) (1+”' + 1 )
= === D) V& =
«/1+rf{ (1:4‘ + T’)" (@+T \l-l—l" + Tz)

Put T'= 4 tang. =, then T = a sect. 'ww,'a 4= T == a* sect.
*z ; by this means the last term under the sign of the fluent

= Vigr: 7sin @
ftned S

is changed to = .
8 + tang. ’w)% 4 (147* sin, gy’

(1+r‘

. T
wherefore, observing that tang. » = —

, and consequently

. T
sin, @ = T we find at last

* This quantity can be put under another form, which may be better in some cases.
: .

If we denote by &' the side rv of the triangle, r = %-, and

b Vot b 4b*

A = arc (tang. = 7 X --—-:;—-—-—) = arc (tang. = ";-)
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B=—I_L(% +/,+,+ 7 —L +v/1 +aff§,;}

Vigr®
r
Vx+7’ V1+r’
We have yet to find the value of C; and at first we get

l\/a +b"

T
T ' T Il T
¢ =f(a’+ T:)-% _f(a‘+(l+ r’)Tz)% =f(‘ +a?:}% R
. . az
T
2
f(;.:ﬂ‘l’%:)%’

which again integrated, becomes
b b

+ Vidgrr VI +r‘

The expressions we have thus arrived at, for the action of
a right angled triangle, are of such continual use in the fol-
lowing propositions, that it will be convenient to represent
them by some concise symbol; and as they are functions of

( +‘/1+r 7‘)

Vl+r"

a, b, and r we may put

A = arc (tang. = —\/1 +4 — H" b*) — arc (tang. = -:;)

¢ (a,b,r) — arc (tang. == -—’—).
VETCTF
B = IEYY 1+r (rb+ a:t(t—i r®)
Vl Fr ( + \/ + Va0t }
= x (a, b, 7’).
. b b 1 VIifreb 147 b
=L{7++v 143 - m=L [+ Vi HE
= (4,0, 7).
Cor. 1. 1f, whilst  remains constant, b and a are supposed
to vary, but so as to preserve the same ratio to each other, the

l
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partial forces A, B, C will remain unchanged, as, consequently,
will the total force, both in quantity and direction.
For, if we put m x a for b, the expressions of the forces

become ¢ (1, m,r) — arc (tang. == -;—) yx (1,m,r), 4 (1,m,7);
which are independent of the absolute values of @ and b. It is
scarcely necessary to. observe, that arc (tang. == —;—) is the

arc, to the radius unity, corresponding to the angle rvin.

Cor. 2. When r becomes infinite, the triangle rmv is changed
into a parallelogram, infinitely extended in the direction rv;
in which case, the expressions of the forces become very

2

Va*tb*
L3’ C=1L.
a

) . b '
simple, viz. A = arc (tang. = 7), B=1.

pVETT
a :

Prop. 2.

Let vmu, fig. e, be any triangle whatever, pm a line per-
pendicular to the plane of the triangle, at the angular point m
from whence, let fall the perpendicular mr on the opposite
side uv; moreover, let pg, po, be respectively parallel to
mr, vu.

It is required to find the actions of the triangle vmu on the
point p, in the directions pm, pg, po.

If we keep the same denowminations as before, and put, be-
sides, r'==tang. umr, it is plain from the last proposition, and
because the action of the whole must necessarily equal the
sum of the actions of its parts, that

A =000 o{asb ) aro(tang, = 2] —arc (ang. =

B=yx(a,b,r) 4 x(a,b,r"); C=1 (a,b,7) — (a,b,7).
When umv is a right angle, we shall evidently have arc
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(tang. = -;—) + arc (tang. = ~| = Z, = being the number
38,1415, &c.: this makes the expression for A somewhat sim-

pler, in that case.
- If it is the triangle vmu’ whose attraction we seek, we have,

putting ' = tang. u'mr,
A =¢(a,b,r)—¢(a,b,r')— arc(tang.== -l;-) -}-arc(tang.= —:7) ;
B=x(a,b,r) —x(a,b,"); C= 4 (a,b,r) — Y (a,b,7").

Cor. 1. As a rhombus may be divided, from its centre, into
four equal triangles, like that in fig. ¢, but right angled at m,
the angle lying at the centre; if b represent a perpendicular
from the centre of a rhombus on one of its sides, and » and "
the tangents of the angles, that this perpendicular makes, at
the centre, with the semi-diameters of the figure, we shall
have for the action of the rhombus, on a point situated per-
pendicularly over its centre, at the distance q,

A=y40 (a,br) 4+ 40¢(ab 1) — er

Cor. 2. As any plane, terminated by right lines, may be
divided into triangles from a point within it, we may find, by
means of this proposition, the attraction of such a plane, on a
point above it, both in quantity and direction. Let, for ex-
ample, uvu'v’u, fig. 6, be the plane, p the attracted point; let
fall the perpendicular pm on the plane, and from m draw right
lines to the angles u, v, u’, v/; the plane will thus be divided
into triangles, situated, with respect to the point p, like that
in the proposition.

The attraction may still be found, if the perpendicular should
fall without the figure; as in

MDCCCXII, L1
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Prop. 3.

To find the attraction of a triangle umv, fig. g, on a point p
any how situated.

Let fall from p the perpendicular pim’, on the plane of the
triangle; join m’m, m’u, m’v. Find, by the last Prop. the attrac-
tions of the triangles m’uv, m’'um, m’vm, on the point p; and
resolve them into others in the directions of any three rectan-
gular co—ordinates: and, when thus resolved, let the actions of

r
{m l in the directions of these lA ﬁ, g,]
le va CO"OI’dlnateS be lLA”, B”, C/IJr

It is plain, that the actions of the triangle umv, on p, in the
directions of the same co-ordinates, will be
A — AI AII B BI BII C CI C/Iv.

There may be other cases of this proposition, in which the
triangle and point are placed differently, with respect to each
other, from what I have represented in fig. 3; but the reader,
who understands the case that has been considered, will have
no difficulty in any other that may occur.

Though the preceding propositions contain every thing that
is neccessary, for finding the attraction, both in quantity and
direction, of any plane bounded by right lines; yet there are
some cases worthy of a particular notice: as

Prop. 4.
To find the attraction of a rectangle mrvr’, fig. 4, on a point
p situated perpendicularly over one of its corners as m.
Draw pg, po, parallel to mr, mr’, the sides of the rectangle;
put b=rm, b’ = r'm, r = tang. rmv, 7’ = tang. r’'mv: then, if
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A, B, C represent the actions of the rectangle, in the directions
pm, pg, po, we find, by means of Proposition 1,
A=o¢(a,b,r)+o(abt,r)—=;
= (a,0,7) 4+ ¥ (a,0,7"); C=d(a,b,7) + x (a, ¥, 7).

We may eliminate » and 7/, from these expressions, by

. 4 b .
means of their values - and 4; ; and thus we may put A under

a very simple form, It becomes, at first,

Iv4 2 12
- +b CHOTT B ) + arc (tang

A = arc (tang. = —:7 %

Var 4 > b* k2
a ) - 7
But, by trigonometry, « and @ representing any angles what-

- tan tang. B
ever, tang. (z 4 8 = — fmz jx fmg 5 the application of

which formula gives us, instead of the foregoing expression,

A = arc (tang. = 7+ Vo b 4067 — 3

2
and this again is easiiy changed into the following form,
by I :
= .= ‘hich
A Aare tang. = o b*) which is easily

perceived to be the same as Mr. PLAYFAR’S expression.

In a similar manner, might the expressions for B and C be
simplified : but it is perhaps easier to find new forms, ab initio.
Thus we may get B immediately, from the double integral

— J‘f(u J:';l jr o if the fluent, with respect to ¢, be taken
from ¢ =0 to ¢t = ¥'; and, with respect to T, from T'=o to

ITI.'
T=»s. The first mtegratlon gives B = f EET fu‘ TTL
2

@.nd by the Second
V 2 P bl V 21 b b I)l

— Lk

L4

Lle
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It is plain that, to find C, we need only change & into ¥, and
the reverse, in the last expression, whence
Varyb* 4+ b Vit b4 b 4 b
C=L. —— — L. e

Prop. 5.

To find the attraction of a regular polygon, on a point
situated perpendicularly over its centre.

As this figure is composed of isosceles triangles, if we put
b for the perpendicular from the centre on one of the sides,
and r for the tangent of half the angle at the centre, subtended
by one of those sides, we have, by Prop. 1, for a polygon of
2 sides,

A =2narc (tang. = % \/1 -+ I':,r b*) — en arc (tang. = -’—),

which, because the last term = (n —2) #, by Euclid 1.32.
Cor. 1, 1s

A = en arc (tang. = ——\/1+3-+-—r~b)-—-(n-—-2)»r

‘ Prop. 6.
To find the attraction of a circle, on a point situated per-
pendicularly over its centre.
This is only a particular case of the last proposition, when
7 is infinitely great and 7 infinitely small.

Itis easy to see, that the arc whose tangent s -1-\/ 14— 1+ e

will have for its cosine V -, if we keep only the first power
a*

of r; consequently we may put it under the form = — — arc
ra

{sine = WS

=
— —
2

ra . .
v Very nearly; this mul-
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2nra —_— 2ra

——— = 7
Vaz_!_bz {;/a"+b"
ar. If we substitute this value in the expression for a regular

plied by en is nz — by putting = for

polygon, it becomes A = e {1 —_ }, the well known

a
vargb*
expression of NEWTON.

§ 1L

Of the Attraction of Pyramids, and generally of any Solids what-

» ‘ ever that are bounded by Planes.

The simplest case of the attraction of such bodies as we are
to consider, is that of a pyramid with the attracted point at
the vertex: and it fortunately happens, that on this simple
case the action of any body whatever may be made to depend;;
which is the reason of my placing the general problem in this
section, though I afterwards treat separately of prisms.

This facility, in the case of pyramids, results from what
was shewn in Cor. 1. Prop. 1, viz. that if we put z for a and
mz for b,in the functions ¢ (a, b,7), x (a,b,7), (a, b, 7), they
will become ¢ (1,m,7), x (1,m,7) { (1,m,r), into which z
does not enter. |

Prop. 4.

Let figure 5 represent a pyramid with a triangular base
umv, the vertex p of the solid being in a line pm, perpendi-
cular to the triangle at the angular point m. It is required to
find the action of the pyramid on a point at that vertex.

Draw the perpendicular mr, also pg, po parallel to mr, rv.
Join pr, and let r'm’ be parallel to rm. Call pm’, z; r'm’, y;
then y = mx,m being the tangent of the angle rpm., The
attraction of a triangular section of the solid, made by a plane,
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passing through r'm’, parallel to the base, will be found by
Prop. 2, if we put x for a, and mx for b; and is in the respec-
tive directions pm, pg, po. |
A=o¢(1,m, 1)+ ¢ (1,m, ") — arc (tang. = -;-) — arc
(tang. = -;—) : ' ‘
B=y(1,m,7) = x(1,m,7'); C={(1,m,7r) —§ (1,m,7),
If we multiply these by & and take the fluents, the actions
of the pyramid are found to be

A=uz¢ (1,m,7) -} 20 (1,m, ') = x arc (tang. = -—)——xarc

) §
(tang. = 7) :

B =xx (1, m,7)+x;¢(1 m, ') C =z (1,m, r)-—-xxp
(1, m,1").

If the pyramid, whose action we were seeking, had been
that whose is u'mv, we must have used the other values of
A, B, C given in Prop. 2. '

Prop. 8.

Let fig. 6 represent any pyramid whatever, whose base
uvu'v'u is terminated by right lines; to find its attraction, on a
point at the vertex p, both in quantity and direction.

Let a perpendicular from p meet the base at m, and draw
lines from this point to all the angles u, v, &c. of the base. It
is plain, that the solid will thus be divided into such pyramids
as were considered in the last proposition; so that the pro-
blem is already solved.

~Cor. 'We may apply this to the pyramid whose base is
a rhombus, and the vertex placed perpendicularly over its
centre. By proceeding as in the proposition, it will be divided
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into four equal triangular pyramids; and, using for each of
them the notation of Prop. /7, we have for the action of the
whole rhomboidal pyramid, on a point at its vertex,
A= 420 (1, m,7) | 420 (1, m, ") — 27z

The other attractions evidently destroy each other.

It is not necessary, in the above proposition, that the per-
pendicular pm should fall within the base; if it falls without,
we shall however have occasion for the following problem.

~Prop. 9.

- Let umv, fig. g, be any triangle whatever, p a point any
how situated with respect to it; join pm, pu, pv.* It is re-
quired to find the attraction of the oblique pyramid pumv,
. whose base is the triangle umv, on a point at the vertex p.

Let fall, from p, the perpendicular pm’ on the plane of the
base umv, draw the lines m’m, m'u, m’v. Find, by Prop. 7,
the attractions of the pyramids pm’uv, pm‘um, pm’vm, whose
bases are m'uv, m'um, m’vin, and their common vertex p.

Resolve these attractions into others in the directions of any
rectangular co-ordinates, and when thus resolved let the ac-
tions of the pyramids

r
pm'uy “ in the directions of these {A B i

pm‘um > !>,
co-ordinates be
1me rem J o-ordinate | A”, B, Cv J|

It is plain, that the actions of the pyramid pumv, on the point p,
in the directions of the same co-ordinates, will be A — A’— A";
B—-B —~B"; C—-C—-C",

* I have not actually drawn the lines, to avoid confusion in the figure.

,B,C1
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Prop. 10.

Let fig. 4 represent, in every respect, the same as it did i
Prop, 4 join pr, pv, pr’; it is required to find the attraction
of the square pyramid pmrvr’, on the point p at its vertex.

If we proceed as in Prop. %, but make use of the expressions,
for the action of the rectangle mrvr’, found in Prop. 4, and
put z for a, mv for b, m'z for ¥, (where m = tang. rpm, m’
= tang. r'pm) there will result

A=uzx0 (1,m7r)4xp (1,m, 1) — Z‘:f,
B=uay(1,mr) 4 ab (1,m,7); C=uzd (1,m,r) + 2
(1,m, 7).
But it will be better to make use of the more simple expres~
sions, that were given in Prop. 4, by which means, we get

mm'

» m—ym”)
B — {L . (\/mg_!_ m,) —L. Vi mEm 4 m'}x

V14 m?

A == arc (tang. =

. S VIiFmymi 4 my
(,__{L.(\/l-[-m + m) — L. e }x,
Prop. 11.

Let the base of the pyramid be a regular polygon; the
vertex situated perpendicularly over the centre of the base;
the attracted point at the vertex.

By making use of the expression in Proposition 5, putting
z for a, and mx for b (m being the tangent of the angle, at
the vertex, formed by the axis of the pyramid and a line

drawn from the vertex to the middle of one of the sides of the
base, we get
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A = onx are (tang. = - Vide (14+7)m’) — (1 —2) 7.
~ Hitherto, I have considered the action of a pyramid, only
on a point at its vertex ; the case which next presents itself, is
that of the attraction on a point p’ (fig. 5 and 6) any where
in the produced axis mpp’. It would be easy to give a direct
solntion to this problem, but I choose rather to make it depend
on the propositions that have been already established: and
.to shew that the functions ¢ (a, b, r) x (a,b,7) ¢ (a,b, r), of
which so much use has been made, in the preceding inves-
tigations, are sufficient in all cases of the attraction of bodies
bounded by planes.

Prop. 12.

Let pumv (fig. 5) represent the same pyramid as in Prop. 7;
to find its attraction on a point p’ in the produced axis.

Suppose p'u, p'v joined, the attraction of the pyramid pumv,
on the point p', is the difference of the attractions of the pyra-
mids p’umv, p'upy on the same point; which point being at
the common vertex of these two pyramids, their attractions
are found by Propositions 7 and g; and the problem is solved.

Prop. 13.

Let it now be the action of the pyramid pumv, fig. 7, (where
the plane of the base umv is not perpendicular to the line mpp')
on the point p’, that is required.

The attraction sought for will still be the difference of the
.actions of the two pyramids p’'umv, p’upv, but these must now
both be found by Prop. g.

MDCGCXII. Mm
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Prop. 14.

Figure 6 representing, in every respect, the same as in
Prop. 8, it is required to find the action of the pyramid, on the
point p’, in the produced axis.

As this solid may be divided into others, situated, with re-
spect to p’, like thatin Prop. 12, the problem is solved by what
was shewn there. , :

If the attracted point was not in the line p’pm, perpendicular
to the base, but in some other line #ppu, passing through the
vertex, and meeting the base in p; draw lines {rom p to all
the angles of the base, and the solid will be divided in such
pyramids as were treated of in Prop. 1g.

Prop. 15.

Let pumv, fig. 7, be any triangular pyramid whatever, and
let it be any how cut by a plane, whose intersection with the
pyramid is the triangle «fy; it is required to determine the
action of the portion p@yvum (V»hmh is cut oft by the plane)
on a point at p.

The attraction, of the sohd in question, is the dlﬁ‘erence of
the actions of the pyramids pumv and p@By, which actions are
feund by Prep. 9.

Prop. 16, or general Problem.

To find the action of any solid, bounded by planes, on a
point either within or without it.

It is plain, that by drawing lines, from the attracted point
through the solid, this may always be divided, either into such
pyramids (with the point at the vertex) as were considered in
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Prop. g, or into portions of pyramids, like that treated of in
Prop. 15; and consequently the solution of the problem may
be obtained by means of these propositions.

§. IIL
Of the Attraction of Prisms.
Prop. 17.
To find the attraction of a right prism, whose base is a re-
gular polygon, on a point in the produced axis.

We saw, in Prop. 5, that the action of a regular polygon,
on a point situated perpendicularly over its centre is

A=cnarc (tang. =+ /14 Z2 ) — (n—0) .
To find the attraction of the prism, change a into z, mul-
tiply by %, and take the fluent.

Nowfa& arc (tang. == ;—‘x V2 (1-p1*) 0°) :fo&cp (x,b,7)
== r arc (tang. = ;“; s/x”+ (17 b‘l)r-fx;;f:(tang. = ?‘;
Vad(147r)b)==zarc (tang.z-r-’; Vx“-]-— (1-47)0)

rb*xs ) - tamr

. G . . 1
taking the fluent,* it becomes == r arc (tang. = —
‘/xa+(1+rn)bg)_bL rh + V(l-l-r‘)b"-}-x

Vl)"-i-x‘

*Puta® 4 (14 72) 1* = 2% b* 4 2* == 2* — 2%, x4 = z%; then

rbax rb*z b z4rb , .
f(bz+xz) Vai rae "'fz‘—- SRS L. P (Stmeson’s Fluxions,

_ i (z47b)* V{(14r?) 242 4 rb
‘ p. 140,) =3 L. —-——-;;—b—i pomed bL . \/b’-_!_x

Mmge
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- For the sake of brevity, call this quantity F (b,r,x) and we
have for the attraction of the prism,
A =onF (b,r,z) — (n—2) =z - corr.
The attraction of any other right prism, in the direction of its
length, depends on the same function I (b, r, x); as in

Prop. 18.

To find the attraction of a right prism, whose base is a rect-
angle, on a point in the produced axis.

We saw in Prop. 4, that the action of a rectangle, on a point
situated perpendicularly over its centre is

A=49(a,b,7) 4 40 (a, V', ") — o=,
where & and &’ are the halves of the sides of the rectangle, and
7 and 1’ the tangents of the angles, formed respectively by
those sides and the diagonal. By changing « into z,and mul--
tiplying by %, we have, for the prism,
A =g4yfx¢p (2,b,1) 4 4f%¢ (z,V,7") — 2wz ; whence,

- by what was done in the last proposition,
A = 4F (b,r,x) 4 4F (¥, ', x) — exx - corr.

Prop. 19.

Let the base of the prism be a rhombus, the attracted point
in the produced axis of the prism.

We found, in Cor. 1, Prop. 2, that the action of a rhombus
on a point situated perpendicularly over its centre, is (keeping
the notation there used)

A= 4¢ (a,b,7) 4 40 (a, b, ') — 2=, therefore, pro-
ceeding as before, we have, for the prism,
A = 4F (b,r, &) 4 4F (b, 7', £) — 2wz 4 corr.
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We will now consider the attractions of prisms more gene-
rally. ‘
Prop. 2o0.

Let pr'v’vrm, fig. 8, be a right prism, whose base is the
triangle vrm right angled at r. It is required to determine its
attraction on a point at p, in the directions pm, pr, po; po
being parallel to r'v’.

If we wish to obtain a solution by means of what has been
already done, we may conceive the solid under consideration
to be divided into two pyramids; viz. the pyramid pmrv with
the triangular base mrv; and the other pyramid pr’'v’vr, whose
base is the rectangle r'v’vr; the point p being at the common
‘vertex of both. |

Put pm : z, mr = pr'==xz'; conceive the diagonal vr’ to
be drawn, and put tang. rmv = tang. r'pv’ == r; tang. v'rr =
'3 tang. vr'v =" ; tang. rpm = m; tang. rpr’' = m'.

We get immediately, from propositions # and 10 (putting
A, B, C for the respective actions in the directions pm, pr’, po)

1

A=uxp (1, m,r) — z arc (tang. == 7) + z'x (1, m', ") +
'Y (1,7,7");

B=ax (1,m,1) 4 2p(1,m,¢') 4+ 2% (1,7, 7"") —2' =;
C=ua} (1,m,r) 42 (1,m', 1") + 2% )1,7,7").

~ In finding these values, the first expressions of Prop. 10
were made use of ; if we take the others, there will result the
simpler forms

A=uzp(1,m,r) — xarc (tang. = —';) -+ x'{L (V14741
—L. Vifrim® + r} ;

vVigm®

rm'
B = xx (1, m,r) - 2' arc (tang. = «/W)’
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C=uz) (1, m, r) 4 x’{L,. (Vig- o™ 4+ m') — L.

Vi4r:
These are, perhaps, as simple expressions as can be had in
this case; we may however find others; nor is it necessary
to conceive the solid divided into pyramids.

- Thus we may obtain the value of the force A, by the me-
thod of the preceding propositions: a triangular section of the
prism, parallel to the end r'pv’, and at adistance x from that end,
will have its action on p expressed by ¢ (z, z',7) — arc (tang.

= -:-), using the same notation as before ; therefore, the action

of the pyramid in the direction pm, is

A = fxp (z,2',7) — x arc (tang. = ——) =F(z',r,x) — zxarc

(tang. = -;-) -}- corr.

Another Way of finding the force B.

Draw ks parallel to r'v’; call pk, 2’; then ks =r x 2. Con-
ceive a plane to pass through ks, parallel to the back rvv’r’ of
~ the prism; the section made by it will be a rectangle whose

sides are x and rz'. The action of this rectangle on p, in the
—_—
VI rr gz

fore the action of the prism, in the same direction, is

di‘rec‘tiont pr',is arc (tang. = ) by Prop. 4, where-

rx

vy (4 (1+1" z*

B = f&' arc (tang. = ) where z' is the variable

quantity, we have then

B = z' arc (tang. = __._ff._____)-— »are (tang. =
( g ,\/xz_i_ (l+f")x“'b jx arc (tdng

re )
v 4r2)a® )
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Put _“ff_z = ¢, and the last term becomes — fz’ arc (tang.

' re (1+r¥c
| e f e — 1
Vet ) f G Th {(l—i-r’) c‘-kx’z}vcz—l-x'z} =

{L(x'_l_ 1/c+x'2) V1+r (Vx+r”-+\/— ,:_’_x:z)};
therefore

? —
= & arc (tang. ]
B ( g ) V12+ (l+rz)xlz

) + e L (a'4- V27
+\/ pils pliee +x,,) + corr.

If the fluent is to begin when &' = o, the correction is
—rcL.cdzL ..;._

I have dwelt the longer on this proposition, because the at-

traction of right prisms, in all cases, may be made to depend

on it.

Cor. 1. It is in the first place evident, that by means of this
proposition, we may find, by parts, the force, both in quantity
and direction, with which a point q, any where on the edge
pm of the scalene prism represented by fig. g, is attracted.

The same may be said of the action on p’ any where in the
produced axis ; this will be the difference of the actions of two
prisms, like that in the figure.

Cor. 2. Moreover, if, instead of the prism in ﬁg 9, the point
q was placed any where on the edge of a prism whose base is
the triangle quv, fig. 10, the action may still be found; for it
will now depend on the difference of the action of such prisms
as were treated of in the Proposition ; thatis to say, the action
of the prism whose base is quv as the difference of the actions
of those whose bases are qvr, qur, qr being a perpendicular
on vu produced,

—xL(Vr-i-x
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Prop. e1.

To find the quantity and direction of the attraction of a right
prism, whose base is any triangle whatever, on a point any
where on its surface.

Let the triangle uvu/, fig. 11, be a section of the prism, pa-~
rallel to its base, and through the attracted point p. Let fall
the perpendiculars pr, pr’, on the opposite sides: and the solid
may be divided into four prisms, whose bases are the right
angled triangles pur, prv, pvr’, pr'’, and the attraction of each
of these, both in quantity and direction, is given by Prop. 20.

It is plain that there may be other cases of this problem,
besides the one here considered ; for instance, one of the per-
pendiculars may fall beyond the base; but it would be end-
less, in a subject of this kind, to consider every particular
case, and in none can the intelligent reader find the smallest
difficulty. ’ ‘

Prop. 22.

To find the attraction of any prism, fig. 12, whose base is
a convex polygon uvu'v’, on a point q any where within it.

As such a solid may be divided into triangular prisms, like
those in Prop. 20 and its corollaries, with the attracted point
on the common edge pm, the problem is already solved.

If the point. be at p’, in the line mp produced, the action on
it may still-be found, being the difference of the actions of two
prisms, like that in the figure.

Prop. 23.
Let vuv/, fig. 1g, be the section of an isosceles prism; pv
a line passing through the vertex v perpendicularly on the
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middle of the base. It is required to find the action of the
prism on any point p in the line pv. '

This action is equal to the action of the prism whose base is
the triangle v’pu (given by Prop. 20), less the actions of the
prisms whose bases, or sections, are the triangles v'vp, uvp,
which are found by Cor. 2, Prop. 2o.

Scholium.

I considered here only an isosceles prism ; but the solution
is just the same, if the section of the prism is any triangle
whatever, as v'uv, fig. 14, and the action on a point p, (situated
in the line uv produced) is required. For the attraction wanted
will be the difference of attractions of the two prisms whose
bases are the triangles v'up, v'vp, and these are given by Cor. 2,
Prop. 20. ' )

Suppose the base of the prism, whose attraction is required,
to be the trapezium v’usp, fig. 14, the action of this on p, being
the difference of the actions of the triangular prisms, whose
bases are v'uv, fzv, is found by the case just now considered.

In this manner, might cases be multiplied without end ; but
I think it is sufficiently plain, that by means of the preceding
propositions and scholium, we may find the action of any prism
whatever, on a point either within or without it,

§. IV.
Of the Attraction of certain Solids not terminated by Planes.
The expressions, arrived at in the first section, are useful in
finding the attraction, not only of such solids as are bounded

by planes, but of a great variety of others; viz. of such as
MDCCCXIL Nn
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have their sections in one direction continuous curves, whilst,
being cut in a different way, there results, from their inter-
section with a plane, a polygon, or rectangle, or some other
right lined figure.

As no one, that I know of, has considered the actions of
such bodies, I shall offer no apology for giving a few ex-
amples.

Let uvv'w/, fig. 15, represent any regular polygon, whose
plane is perpendicular to the line pm, and its centre in that
line: morecover, let this polygon be variable in magnitude, and
move parallel to itself in the direction pm, in such a manner,
that the middle point r of each of its sides uv, may describe a
given curve pr.

Prop. 24.

Let it be required to find the attraction of the solid thus
generated by the polygon, when the curve pr is a circle,* and
the attracted point at the vertex p of the solid.

The attraction of a regular polygon was found in Prop.
and it will be adapted to our present purpose, by putting z*
for a*, and ekxr — z* for b*, where % is the radius of the circle |
pr: and we have, for the attraction of the solid,

A = enfx arc (tang. = —;— \/1-!— l+rz-(gkx--acﬂ)) — (n—2) zx

xz

or A == enfx arc (tang. = ;Ij—c Viek (14-77) L—7"2") — (N=—2) 72

2

That part of A, under the sign of integration, equals

enx arc (tang. =';§5 Vekh(141) 2 =7rat) — znfx-a_;?(_: (tang.

=—Vek(1+r)z —ra),

* We may, not improperly, term this solid a polygonal spbere‘.
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and, if we put 2z = «, the last term becomes

— anz* a-;‘_é (ta,ng. = _'». \/2k(1 +r') . rtzzzv)

=3 this fluent is

= anm/zk(l-:-zz:)—r e 2714-; \/’k(‘+fz) sz

k(14 . re ) I 2k( vdrt)
PR e (e = =) — 35 /ECD
—— arc (sine T 3 % —z }
or by putting its value for 2, ,
znk (l-]—r") M/.; ) zk(x»}' r) o
arc (sine = —| — 7 : —_
( Vzk (x+r”‘) e r—*

Collectmcr all the parts of A, we have at length
/4

A = onx arc (tang. = — V/ek (1 + ") 2 —12*) — =

S~
Z"k ("H)arc (sme —_ —L f__._) —
v a2k (1+41%)

Vebk(14-r)z—ra+4

(n — 2) wx 4 corr.
But it is easy to see that each of the arcs in.this expression is

the complement of the other; put then A = arc (tang. = —
V/2k (14r") x — r'z*) and the expression becomes

A:‘:{fg + n (h—2) } (7—2A) 4 2o7 —nz . tang. A - corr.
When z =0, A = =, so that, if the fluent is to begin when

&£ == 0, no correction is necessary.
1 ) o (r=2)

When z = 2k, A = arc (tang. = — ——, and

Vek (141r) z—ra* =2k, 7 — A =7 — s =
whence we have for the attraction of the whole solid

=1 oy — 2 ().

This will appear to be an expression of great simplicity, if we

reflect what very ditferent solids it belongs to, from that whose

gection is a triangle, to the sphere whose section is a circle,
Nne
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In the latter case # is infinitely great and r infinitely small ;

r is also the tangent of - = 7- 4 = . T, if we reject the

other terms of the expansion, on account of their smallness.
The expression for A may then, in this case, be put into the

form
2kw 2nk

-—-2,371"}‘ { I 7:3 ——T’
n V3w

nowr{ %4 - Sl =(g.p)r{ %+ 5 2rf=r(+2

whence the second term of the last number is changed into

Lo
n?

7

zlm(l—"‘“)
— 31 z znk
_...-;---—/mr_...-_————kw,by

7'(1-»%--’;) r .l 3 r

putting « for #r: and, by substituting this value, we have at

2kn

last A = -‘-;- kz; which is the well known expression for the

attraction of a sphere on a point at its surface.

If the generating polygon is a square instead of a circle,
7 = tang. 45°==1, and equation () gives A = 4k (v —2)
= 4k % 1,14159, &c. which exceeds the attraction of the sphere
by about one-tenth, if pr is the same circle in both.

Cor. 1f we would know the radius (#) of a sphere, which
shall attract, a point at its surface, as much as a polygonal
sphere, of the length 2k, does a point at its vertex, we have
only to put
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Prop. 25.

Let the directing curve pr be a parabola ; the attracted point
at the vertex p of the solid.

We must here make use of the formula in Prop. 5, as we
did in the last example; but as the equation of a parabola is
y* == ax, this latter quantity must be put for &*. Thus we get,
for the attraction of the solid,

A == enfx arc (tang. = ?ifc VI (177 ax) — (n—2) 7.

The part, having the sign of integration, may be put under

the form enx arc. (tang. = ;lZ Va4 (1 -=1) ax) enfz arc

(tang. = ;’; V2 (1= 1*) «x); in the last term of which
put 2° =z, and it will become

— szhjz“'é?e (tang. = -:—z\/z=+ (147)a)

2 (24
o Qnmf{ Vit Qta  EHIVEL 1) =t
= 2nar {L (24 V2t (11r)e) — —;— arc (sine =
z
% v;‘:r;)}

Collecting all the terms, we have at length

r
Vifr®

A = enx arc (tang. = — /"4 (147")ax) — 2ne arc(sine =
r Ve - -
T Vm) + enar L (\/x + Vet (14r)a) —
(n — 2) wx - corr.
It is observable here, as in the last proposition, that each of
the arcs in this expression is the complement of the other;

put A = arc (tang. = —+/7* 4 (14-1°) ax), and the attrac-
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tion becomes A =n (2 4 ) 2A — 7 ) - 227 + 2narL (V'
V24 (1 41) ) 4 corr.
~ When z =0, A == =; so that, if the fluent is to begin at

that term, we have corr. == — 2nar LV (1 47°) .

If we would find, from this expression, the attraction of the
limit of these solids ( which is the parabolic conoid) we must
observe, that the arc A may be put under the form

. v .
— — arc (sine = % —=_), whence, because r is infi-
2z Vigrr " Vxtpal {
. vV o VT
nitely small, 2A — 7 = — er. = —2—. , qu.
V.Z’-i—a n V.z‘+a

prox. ; substituting this value, and = for nr, and neglecting 7+,
we get

A—_-zqr?{x—-\/x‘-l—xx-l-xL(t/}— -+ Vx-i-a)} -}- corr.

for the action of a parabolic conoid on a point at its vertex.

Prop. 26.
Let the curve pr be a parabola convexr to the axis pm, in
x2

which case y = = ; and we have, by proceeding as before,

22

A= anfa& arc (tang. == -5-\/1 -+ g'—"’ﬁx’) — (n—2)7x; or
= enzarc (tang = \/1 + I+'—;) enfz arc (tang, =
\/1 4+ == e Y — (n—2) »x; if we put a* = -l—f—;,, the
term, under the integral sign, becomes
— onfx arc (tang. = — Vo x)

= —— onar { LA (1) s }

Va2t {(1 +7%) a“+x?} Vaya®
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m-—znar{L (z 4 Vo + &) — v"” L( — -

VT ot
\/-— ————)} ; so that

A = enzx arc (tang. -—~-\/1+-——:—x=—) —(n—2)wx --corr.
Lo L (2 b ) + el {5

1 x*
Vit zf.rzf :
This is the attraction of a polygonal parabolic spike, on a par-
ticle at the point. When the polygon becomes a circle,
Arc (tang. = —;— \/1 -} [:f ) = % — -—'—“-——, and

v o® 4 x*

{wa +\/— x_l_“} =L —I-Vz+ ———, whence it

will easily appear that, in the case under consideration,

A =ex {x——_zL (x4 \/Z_—I-_.F-)} -~ corr.
We may conceive the plane uvv’u/, fig. 15, instead of a regu-
lar polygon to be a rectangle, moving along the line pm, as
in the former case, with its centre in that line; and, with the
middle peints r and 1’ of its sides, touching curves pr, pr’ either
of the same or different kinds.

The section of the generated solid, or groin, perpendicular
to its axis, will have its action on the point p (if we put = pm,
and b and b’ for the sides of the rectangle) expressed by

bb' )
A Y
and if we multiply this by x, and put for b and ¥’ their values,
given by the equations of the curves pr, pr’, the fluent will be
the attraction of the generated solid,

— 2721‘

x"+ a*

4 arc (tang. =
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Prop. 27.
Let pr be a circle, pr a parabola; to find the attraction of the
sohd on a point p at its vertex.
Let the radlus of the cnrcle be £, the parameter of the para-
bola'z: then we have b=+V2kr—z; b' =V az, and

A== 4*fx arc (tang. = Vax Vm—x‘)

x‘\/.(-z-/?:l-a)x

——

. cV 2k—z Y
vor A = 4jx arc (tang ars ) if we put ¢ = T and
,takmg the ﬂuent by parts
e (tanef s OV =) = __cVahz
A = 42 arc (tang. = ars ) 4fx arc (tang. = Vars }’

the last térm’ of which, if we put 2* for z, becomes

V k2
WL i e f z arc (tang f*—-?-i z

) and this, by actually
8kexz
z) zz_'_ 2/20"} Vak—z

taking the fluxion of the arc = f { ——, or,
' ) (14¢

by restoring the va}ue ofc, =4V e . VekFa +a. T v‘;ﬁ’
or by d1v1s10n

- 4‘ ‘/ & - .‘/gk + “ f{Vzk—z (€ +“)“jzk—z }

EE:

4\/a VTS + « arc (sine = 7%) — 4 arc (sine =

‘4/272:]—94{;'* % ) .
v 2k Vrial’
SO that we have at laSt

A ,‘ v Vzk-——x

' e )+4,\/.a_» V'ek F « arc

416 arc (tang

«/"';‘\ . Vikta = V%
(sme == =] — qearc (sine = —-57—2_—;;—.— b 7;;:;) + corr......(8).

“As this expression vanishes when z =0, if the fluent is to
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begin at that value of z, no correction is to be added. The
last of the arcs, in the expression above, is the complement
of the first; denote then the first by A, and we have

A=4(z+2)A—cand4V 2 Vek+f zarc (sme-—-—%—_—)

lastly, if we want the whole fluent, when z = 2k, we get
A =2r (V2ke + &* — 2).

Cor. 1. If we make « infinite, in this last value of A, it be-
comes A = 2kx; which is the action of an infinitely long cir-
cular cylinder, on a point at its surface. This is the attraction
of the whole cylinder when x = ¢k; to find the same for any
value of z, make « infinite in formula () ; this gives

) -+ 4 («-%) arc (sine = 1/-1;)
— ez arc{sme = (14 2"':‘”) ,57‘} ; but (EvLerr Calc. Diff,
p- 876) |
Arc{sme = (14 2"—”)

A = 4z arc (tang. = V”"‘

vz } . 3 vV 2kgemz®
—_— == arc ( Sle == —
vk ( v 2/:) + 2%

qu. prox. ; the substitution of this value gives

A=yrarc(tang. = Zk = =+ 4k arc (sine = -gr_)—z\/é'kx-x’

which, because the latter arc is the complement of the former,
is changed to

Se——

—o Vokr —2*

A = okr — 4 (k—z) arc (tang. = 1—/-35"—'1”)

vz
Cor. 2. In like manner we may find the attraction of an in-

finitely long parabolic cylinder, on a point in its surface, at the
~ vertex of the parabola ; this is effected by making £ infinite in
formula (8), whence there results

A= rarc(tang. = C) — 4 arc (tang, = %—i—) + 4V az; or
MDCCCXII, Oo
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A= 4 (z-}-a) arc (tang. == —;) + 4V ez — 2am.

- Cor. 8. If @ = %k, the attraction of the solid in the propo-
sition equals that of a sphere whose radius is k; for by sub-
stituting 2 for «, in the expression ex (V/2kz 4 & — ), it
becomes 4k#, the action of a sphere whose radius is 2 on a
point in its surface.

The attractions of cylinders of finite length, in directions
perpendicular to their axes, are to be found after the manner
of this last proposition ; but there are not many cases in which
they can be expressed by circular arcs and logarithms.

Prop. 28.

Let fig. 16 represent a circle, C the centre, ab, cd two pa=
rallel chords; conceive a right cylinder, whose section is the
portion abced of the circle, terminated by the chords ab, cd, to
be extended to the distance d above and below the pl'ane\of the
figure.

It is required to determine the action of this cylinder on a
point at C.

Put % for the radius of the circle, and let x be the dlstance
from C of a chord parallel to ab. Then, using the same for-

mula as in the last Prop. we have b = d, V' = V' ¥ — 2, and

for the action of the solid, A = 4 /i arc (tang, = d 1/19—-.::1) or

* Vd*yh*
. S dVir_x* dViE_x*
A = 4 arc (tang, = -——-)-—- = __._..)
4§ B} ( g x\/d"-}-k" 4’/:Z arc (tang x\/d"—}-,k"

N4

AVE—~ v 2
D) — gdL EERE VESE o,

= 4 arc (tang. = TViTE e

If'the fluent is to begin when x == o, the correction is
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vy +k

———; and the fluent, taken from x =o to x =%, is

A = 4L LEEETE

which agrees with what Mr. PLayrair found in a different
manner ; except in this case, the object of the present propo-
sition is different from that of his, which finds the action of
such portions of the cylinder as have sectors for their bases.

4dL.

Prop. 29. .

Let the base of the cylinder be the figure parmnbp, fig. 17,
the curves par, pbn being inverted parabolas; or in which
pm® = 2 x rm. Let the attracted point be at p; and let the
cylinder be extended to the distance  above and below the

plane of the figure.
Using the same formula as before, and putting pm =z, we

have b=d, b’ = i ; and, for the actlon of the solid,
dx
V@A atx ot

) — 4fx arc (tang. =

A = 4[4 arc (tang. = ),or
' di

A = 4z arc (tang. = o

v P o z‘+x‘

the last term of which becomes, by taking the fluxion of the

arc,

ardixx——dzsx
4f{ "d°+(u’+d")x"+x"} Vo d* a® 25 x¢
an expression integrable by circular arcs and logarithms.
When 4 is infinite, this fluent takes a very simple form, viz,

2x%
2

— 2¢f1;£=_zxL(1+-§), and, in

“Z

Qo2
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this case ]
A = 4r arc (tang. = ;:—) — 22l (1 4- Z~)
pm o

. . X ’
Cor. 1. Draw the right lines pr, pn; because — == = o

== tang, rpm, the last expression may be put into the form
A = 4z arc. rpm — 4L . sec. rpm.

Cor. 2. If, in the last value of B in Prop. 2o, we make z in-
finite, there results B = ' arc (tang. == r); from whence it
is plain that the first term of the expression for A in the last
cor. Viz. 4z arc rpm, expresses the action of an infinitely long
prism, whose base is the triangle rpn, on the point p.

Consequently, the other term of A, or 4«L. sect. rpm, is the
action of the infinitely long solid whose base consists of the
parabolic segments parp, pbnp.

We may next consider the generating plane uvv'v’, fig. 15,
to be a rhombus, given in species, and so varying in magni-
tude, as to touch four similar and equal curves, at those points
where perpendiculars from the centre of the rhombus fall on

its sides.
Prop. go.

Let the guiding curves be serm-cu'cles to the radius % ; the‘
attracted point at the vertex p.

We saw, in Prop. e, Cor. 1, that the action of a rhombus,
on a point placed perpendicularly over its centre, is A = 4, arc

(tang. -———\/1+ I"" b’) 4 4 arc (tang. = —\/1 l"” b?)
— 273 in which we must put z* for a*, 2kxr — z* for b’ and
we get, for the attraction of the solid,

A =4 [x arc (tang. = % 1/214(1+r’)x—-7’x’) + 4/x arc
(tang. = ;’-; Vek (14 1) & = r"2") — 2ut.
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These fluents being exactly similar to the one in Prop,.g4,.if

we put A = arc (tang. = ;15 Vek (1 7)) z—rz)

A'= arc (tang. = — Vek (1+r") 2 —7"2")
it is easy to see that
A={Z 42 (k=2)} (r—28)— L V(1 F7) 27T
+ enx ‘ ‘
-}- { + 2 (/e-—x)} ('tr—2A')—- - \/2k(1+r")x rz?
~} corr.
If the fluent is to begin when x == o0, no correction is necessary

Lo

for at that term A = A’ = —.

' 1 EREAE T |
When z = 2k, A = arc (tang. = 7)’ A'=arc (tanyg.\.._-—;:—r,-)
and

A = {Zk(‘“')}{w_zarc (tang. =%)} 49 + 4k

k(1—7"%) k
+{= Lo } {7 —2 arc (tang.= f:-)} — L.
If we thought proper, this might still be put under a diﬁ'erei)t

form; forr'= -3;, and the arcs the complements of each other;
and 7 — 2 arc (tang. = -'r—) ==¢ arc (tang.==r); also 7 — 2
arc (tang. -—_——:-) = g arc (tang. ==7').

Cor. 1. When the rhombus is a square, 7 = = 1; and the
action becomes A = 4,7 — 8k, as we found in Prop. 24,

Cor. 2. Let 7' be infinite, then 7 =0, and the solid becomes
an infinitely long circular cylinder; and it is easy to se_e,t'hat
the value of A is reduced to 2k, as we found before in a dif-
ferent manner.

The foregoing problems, which I have chosen from a great
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variety that occurred to me, are sufficient to shew the use that
mav be made of the expressicns given in the first section.

The attractions of certain infinitely long cylinders, which
were derived, as corollaries, from some of the preceding pro-
positions, present us with several curious relations ; with these
I shall terminate the present division of my subject.

Let pout, fig. 18, represent the base, or section, of a circular
cylinder, infinitely extended both above and below the plane
of the figure. Let p be an attracted point in the circumference
of the section. Draw the diameter pu, and, at right angles to
it, the diameter ot.

By Cor. 1, Prop. 27, the action of the whole cylinder on the
point p is k= (% being the radius of the circular section); the
action of that half of the cylinder, whose base is the semi-
circle opto, is ek (= — 1)3 the action of the other half of the
cylinder, which is furthest from p, is 2k: therefore,

1. The attraction of a sphere is to that of an infinite circular
cylinder of the same diameter {on a point at the surface of
each) as 3 to 1, which is the ratio of the solidity of a sphere
to that of its circumscribing cylinder.

2. The attraction of the whole infinite cylinder, on p, is to
the attraction of that half which is furthest from that point, as
the circumference of a circle is to its diameter.

g. Consequently, the attraction of the nearest half, is to that
of the furthest half, as the difference between the circumfe-
rence and diameter of a circle is to the diameter ; or nearly as
2 to 1.

4~ In the circle optu, fig. 18, inscribe the parabola owpvt,
whose equation is bz == j*, so that its vertex may be at p, and
its axis coincide with pu: this parabola will plainly cut the
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circle at the quadrantal points o and t; and, I say, that the
-action, on the point p, of the infinitely long cylinder, whose
base is the parabolic area owpvtco, is to the attraction of the
furthest half of the infinite circular cylinder, exactly as 2 to 1.
For the latter action has been shewn to be 2k; and if in the
expression, obtained in Cor. 2, Prop. 2%, we make « and x both
= k, it is reduced to A = 4k.

5. In fig. 18, draw fug perpendicular to pu at u; and from
p, through o and t, the lines pof, ptg. The attraction, on the
point p, of the infinitely long prism whose base is the triangle
pfg, is equal to the attraction of the infinitely long circular
cylinder. For the action of the prism is 4 x pu x arc. fpu (by

Prop. 20) =8k x % = 2k ; and this has been already shewn

to be the attraction of the circular solid.

5. V.
Of Solids of greatest Attraction.

The subject of this section has occupied the attention of Mr.
PrLayFAIR,* in the same paper I have before noticed ; it had
previously been treated of by SiLvaBeLLE. Frist also, in the
third volume of his works, gives a solution of the same pro-
blem as that which is first considered by Mr. PLayFaIr, but
his result is an erroneous one. Noné of these writers have
pursued the matter any further than what relates to the figure
of a homogeneous solid of revolution. My manner of treat-

* The problems which I 'investigate are similar to the Jirst of Mr. PrayraIr’s,
where the equation of a curve is sought; nor do I at all meddle with that other class
of problems which.he treats of in the subsequent part of the paper.
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ing the subject connects it intimately with the preceding parts
of this paper ; otherwise I should not have given the following
problems a place here.

Prop. g1.

Suppose that a given quantity of matter is to be formed into
a right cylinder of the length od; what must be the figure of
its base, so that it shall attract, with the greatest force pos-
sible, a point in its surface, and in the middle with respect to
its two ends ?

Let fig. 19 represent a section of the cylinder, at the at-
tracted point p, parallel to its base. It is plain enough, that,
whatever is the nature of the curve pab, we may draw a line
pb from p, which shall divide the area into two equal and
similar portions pabp, pcbp.

Put the absciss pd = z, the ordinate ad = y: the mass of
the cylinder is 4dfyx; and, by Prop. 4, its attraction on p is

. — dy
4./ arc (tang, = - RS T‘“:;:'y—)
Let C be a constant quantity, and we have only to make

the fluxion of the following expressmn with respect to y,
equal to nothing,* viz.

dy
Arc (tang. m) + Cdy

this gives

L s__ (%) e 2 ] o\ —
s+ C=0,0r 2 —C )ty (@) =o,
for the equation of the curve pab. Make y =0, and let a be
~the corresponding value of x; the equation becomes

1— C4d’ (d*4-a*) =0, whence C* = m}:l_-;-); by substituting

* Evisrt ¢ Methodus, &c.” p. 42 and 185-6-7.
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‘which value in the equation of the curveyit is ultimately
0l (Fipar) 2 (22 4 (42t ) o
It is proper to remark, that though, in the.enunciation, I spoke
of the point as being in the surface of the cylinder, yet there
is nothing in the above method of investigation that supposes
it to be in contact with'the solid : if thex‘e is to be"a’ given
‘dxstance between them, the nature of the curve will be the
“same.
“Cor.1. If we make d infinitely small, there results
o'z’ — (2" )’ = o for the equation of the curve bounding
the plcme of greatest attraction ; and it is evident, that, by the
revolution of this curve about its axis, will be generated the
solid of greatest attractzon, when it is sought for without any
such conditions or restrictions as “entered into the pre’dedmg
problem.
This exactly agrees with the conclusion arrived at by Sir-
VABELLE and Mr. PLAYFAIR.

Cor. 2. If, on the other hand, we make d infinitely great,
“the. equatxon is reduced t0 y*==az — 2°, which is that of a circle
‘ whose diameter is a, the attracted pomt bemg in the circum-

ference. Therefore --of all zry‘imtely long cy[znders havmg the
areas of their bases, or transverse sectzons equal that which has a
circle for the czrcumferm&e the said base, shall exert the greatest
action on a point at its surface.

Prop ge.

Let a given quantity of matter be fashioned into such a solid
as was treatcd of at the begmmng of the last section (in Pro-
po§1txons 24, 25, 26), viz. having its section perpendicular to
the axis a regular.polygon. The polygon being given in

MDCCCXII. Pp
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species, it is required to determine the nature of the curve pr,
fig. 15, so that the solid may have the greatest possible action
on a point at its vertex p.

If we put z for the distance of the generating polygon from
the vertex, and y for the perpendicular let fall from the centre
of the polygon on one of its sides, the action of the solid is

enfs arc (tang. = —+/ 14 “£C ‘) — [ (n—2) x%
by Prop. 5, and the mass of the solld is nrfy*%; so that the
quantity whose fluxion, with respect to y, must = o, is

2n arc (tang-———\/ +'+'y)+Cnr) and we get
= + C=o,0r ' — C ("4 »*)* (2"

(=*+ 3% Vx‘+ (47
(14+7)y) =o.
Let a be the value of x when y=o, then C*= ;';, and the
equation of the curve becomes

az' — (24y) {22+ (14 7)y) =
When the polygon is a circle, » = 0, and the equation is re-
duced to a*s* — (2 4- ¥*)’ = o, the same as we found in Cor. 1,

Prop. 31.

Lemma 1.

To find the attraction of the right prism whose base is the
triangle mrv, fig. 1, and height 4, on the point p, in the direc-
tion pm; on the supposition, that the density at the ordinate
ks is as any function of the absciss mk, and distance pm.

If we use the same notation as in Prop. 1, and put f (a, T')
for the density of a particle any where at the line ks, we shall
find, by proceédihg, as we did there,

A — arf (a,T) TT
- (@FT% (@ (1+r7) T




as are terminated by Planes, &e. 28y

Hence the attraction of a prism, whose height is ¢, and base
a regular polygon of z sides, composed of triangles having
such a law of density as was supposed above, will be, on a

point placed perpendicularly over its centre,

. . arf (a,T) TT
A= ond [ G @ T

This expression would be easily integrable on various supposi-
tions. Thus we might conceive the density at the ordinate ks
to vary as the line ps, drawn from the attracted point to its ex-

tremity s; this would be to make f (a,T) =V &’ (1) T7;
whence A = end f‘"Tf = rnaa'{L (24T*)— L. éz‘}.’

$+1 2
Again, we might suppose f (a,T) =a*+ T* = (pk)’; this
. . arTT __z2nrad ————-—-—,—-——,
would give A= znz‘z/"/azﬂl_w) == {s/a 4= (14" TH— }

But the kind of problems we are engaged about does not re-
quire us to know the value of A itself; its fluxional coefficient

with respect to T being alone wanted, and this is always
znarf (0, T) T .
i, v (1),
(a’+l“) ;\/az_'_ (l-[-r")l”' ( )
For suppose we had actually found the fluent; when we make
use of it in such a problem as the last, we must change T into

¥, and take the fluxion with respect to y, and the result must

. znarf (a,y) y R I - .
necessarily be —227 ——— x a; which we might have
Y2 @ verarmy 4" &

arrived at simply by changing T into y in the expression
marked (1).
‘ Lemma 2.

To find the quantity of matter in a right prism, whose base
is the triangle rmv, fig. 1, and height 4 ; supposing the den-
sity at any ordinate ks to be f (4,T).

Ppe
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The magnitude of the element of the prism is ¢TrT, and the
mass of this element is ré x f (a,T) TT'; whence the mass of
the whole prism is r4f f (a,T) TT. |

The mass of a prism whose height is ¢ and base a regular
polygon of z sides, formed of triangles having this law of
density, is enraf f (a,T) TT and its fluxional coefficient, with
respect to T, is enr £ (a,T) T x d.

Prop. g3.

Let the Iast proposition be again proposed, but with this
difference, that the solid, instead of being homogeneous, is to
be formed of polygonal prismatic elements, having such a law
of density as in the preceding lemmas.

By proceeding as before, we shall have for the equation of
the curve pr, fig. 15,

2nxr f(2,9)y , .
G verarmn T omri(ey)y =o,

. d — ich s ex -

o TR T o =0 which is exactly the same equa

tion as when the solid was supposed to be homogeneous.

When r==0, we have, as before, a*2* = (2* 4- y*)*; which
shews that the result of Mr. PLAYFAIR extends to an infinity of
cases besides that of homogeneity. |

When, as in our last supposition, 7 == o, and the mass is a
solid of revolution, the function f (a, T) expressing the density,
is a function of the perpendicular let fall from any particle on
the axis of the solid, and of the distance between the foot of
that perpendicular and the attracted point.
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Scholium.

If the preceding lemmas. had been treated on the supposi-
tion that the density was variable along the line ks, fig. 1,
(which is the same as making the density f (£), or more ge-
nerally f (a, T, t) a function of a, T, and ¢) their application
to the problem we have been considering, would give an inde-
finite number of different equations, for the curve pr, fig. 15,
accbrding to the nature of the assumed function f(a, T, ¢):
every one of which equations will, however, have this pecu-
liarity, that if we make r==o, it will become a*x*= (x4 5.
For when r =o, ¢ = 0, and f (a, T, t) becomes a function of
a and T only, and the case enters into Prop. gg just now con-
sidered. '

It may be worth while to see an example of this ; we should
have had, in general, for the action of the polygonal prlsmatlc
element of the solid, by Prop. 1,

. . af(aT,t)1 Tt
A= znaf (@4 1’*+t*)z

and the mass of the same element would have been
ond [ f(a, T, t) T4.

These must be integrated, with respect to ¢, from ¢ = o to
¢ =rT: which cannot be done till we assign a form for the
function f (a, T, ). Let this be a4 T* 4 #*, that is to say,
let the density at any point q, in the triangle vrm, be as the
square of its distance pq from the attracted point p. This will
give

\ = znaff(a,_l_a[l:t_l_tz)z __272626{/‘{14 (rT4- v &4 (147 T7)
—LVFL + T’}I ; and for the mass
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ondlf (@4 T*+ 1) T = endf (@rT+4 rT* + %’L) T.

If therefore we solve Pron. g2, on this supposition of density,
we have for the equation of the curve pr, fig. 15, when the
solid has the greatest attraction,

2L (VT (1 +7)y) — 2LV T+ 7+ C (2y 4 ry°
+ 2] =o

Now, when r is infinitely small, we shall have, by neglect-
ing all the higher powers thereof,

Ly 4+ VI (1)) =LVEI4y + 2=
by substltutmg which our equation becomes

- 4- C (2°4y"), or a2’ — (2°4-y")' =0, as we shewed

V +y‘

Vi +y*
a priori must necessarily happen.

I shall just remark here, that, as the results of Prop. g2, are
not altered by conceiving the density any function of @ and T,
such is also the case with respect to Problem gu, if T there
represent the distance of any particle from a plane passing
through the attracted point and the axis of the cylinder. This
the reader may easily convince himself of.

The proposition just mentioned (g1) is only a particular
case of the following very general one.

Prop. 4.

Let uvv’u/, fig. 15, be a rectangle, whose plane is perpen-
dicular to the line pm, and its centre in that line. Let this
rectangle move parallel to itself, in the direction pm, and vary
in such a manner, that the middle points r and r’ of its sides
may continually touch two different curves,
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The quantity of matter in the solid so generated being given,
and the nature of one of the curves as pr’, to find what must
be the other curve pr, so that the action of the solid, on a point
at its vertex p, may be the greatest possible. v

Put 'z for the absciss pm, 3’ and y for the ordinates mr’, mr;
then by Prop. 4, the action of the solid will be

;o Ane. — ¥

4. /% arc (tang. = - Ve

But y’ is a given function of x, suppose f (z). The quantity
Arc (tang. = E’T/Tffﬁ f(:c)") + Cf (z)

is therefore to have its fluxion, with respect to y, made ==o:

and this gives, for the equation of the curve pr,

) ; and its mass is 4,/yy'*

(x=+y')v::+y () + C=0, or 2= C (2’4 5)" (2" +-{
(z)) =o.

Ez. 1. Let f (z) = ax, or pr’ be a straight line, the equa-

tion of pr must be z* — C”(x’+y’)“{ (14-a*) :c'+y‘} =
Ez. 2. Let pr' be a circle, or f (x)* = 2kr — *, k being the
radius, then 2* — C* (2 4 »*)* (2kx 4 3*) =0, is the equation
of the cother curve.
Ez. g. If pr'is a parabola, or f (r)* == az, the equation of
prisaz* —C (2* 43 ) (ax 4 2* 4 3*) = 0.
Scholium.

In Prop. 2%, after having found the action of the solid there
treated of, we derived, as corollaries, the action of parabolic
and circuiar cylinders of infinite length, by separately making
infinite the diameter of the circle and the parameter of the
parabola. Perhaps it might therefore be supposed, that if we
made £ infinite in the second of the preceding examples, or a
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infinite in the third, the result would be the equation of the
base of the infinitely long cylinder of greatest attraction ; which
however is by no means the case; for that was found to be a
mrcle whereas the equation we get here is
T —C () =o,

and if we make q infinitely great in the first example, the
equation becomes C'= x* 3*, or the line pris a circle with
its centre at the attracted point.

We might resolve this problem, on a variety of hypotheses
respecting the density; or we might add other conditions of
a different kind; for instance, not only the mass of the solid,
but the area of the section, passing through the required curve
pr and axis pm, might be supposed constant. But I pass on
to other suppositions respecting the force of attraction; which
will be treated with as much brevity as possible.

Lemma g.

~ To find the attraction of the triangle vrm, fig. 1, on the

point p, in the direction pm, supposing the force to be inversely
as the mth power of the distance.

Keeping the same notation as in Prop. 1, we have, for the

attraction of an element at q, L = ; which being re-
(@+T*40)
solved, gives, for the force of the whole triangle, in the direction

m, A = »+1 . the fluent is to be taken from
A=/ (a*+T=+t'=) ¥

=0 to t = rT, and we have
arTT m— T
——] le— (2=M) —5 & Q w112
‘/‘az_}_T") (a1+ (1+r‘) T") 2 { ( ) 3(a +T)+( )

T4

(4— m)ss(a‘+1")\z &c}
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The further integration, with respect to T, is not necessary for
our purpose.

Cor. 1. If we multiply this by en, it will be the attraction
of a regular polygon of 7 sides ; and making n infinitely great
and r infinitely small, the attraction of a circle to the radius 7
is found to be

A=

2nraTT ____ -—2nra 2nra
@+ () (@41
which, by putting # for ar, is

A:‘:Q'rr{

(m—1) 2"

N1

e

a
(m—1)a""? - (m—1) (a’+-T“)7fJ§J
the same as is found differently by other writers.
~ Cor. 2. When r becomes infinite, the triangle vrm is changed
into a parallelogram, infinitely extended in the direction rv;

and we have

T r*T*
A= [t {i— (o) i + (a=m) (4m)
T 1
@y S

which, when  is an even positive whole number greater than

2.4.6000(M—2) al
357 seens(—1) vy ey
(a*+1 )Q

2, is reduced to A =

Cor. g. If instead of the action of the triangle vrm, that of
a rectangle, whose sides are rm (y) and rv (3'}, had been
required, we must have proceceded exactly in the same man-
ner, but the fluent, with respect to #, must have been taken
from ¢ = o, to ¢ == y’; so that we have only to substitute '
for T, in the value found by the lemma, and there results

7': vm .
A= A S 1 (2=m) ——3-—rp Q—m
(@+T1%) (a"+T*+y")ﬁ-{—1{ ( ) 3 (w17 gl )
'V.&

) st — 0.}
(4=m) S5ergry — &°

MDCCCXI, Oq

g




294  Mr. Knieur on the Atiraction of such Solids

Another Method of finding the Action of the Triangle vrm.

The expressions we have found will terminate only when
m 1s one of the series of numbers 2, 4,6, &c. Ifmis among

the odd numbers 1, g, 5, &c. = —-z—- will be a whole positive
number; and we have for the action of the triangle, or rect-
angle (accordingly as the fluent, with respect to ¢, is taken
from t = o, to ¢t = rT, or from ¢ = o, to £ = ') provided m
is greater than g,

¢ m—2z

1 :
““faT{(m—l) (a*+17) x (a:.+Tz+tz)’_':'_1 + (m=—1) (m—3) (a*+ 1)

+ (m=—2) (m—4) 3 4
(a +Tz+tz)”’—"3 (m=—1) (m=3) (m—3) (@F1°¢ * @+ T2+tz)"‘_}5
o DO )
ey ————— s AL G
VT t+1 =) }

Let us, for brevity, denote this quarmty by JaTe (a,m, T, 1);
then for the action of the triangle vrm we have A = faT
(a, m, T, rT); and for the rectangle, whose sides are rm (y)
andrv (') A =faT<p (a,m,T,y'). Whenm =1, or g, the
above expression will not give the attraction ; but we evidently
have, in the case of m =1,

A =f—;—;—i—T—; % arc (tang. = Va’:-T’) : zfnd when m = 3,

. 1 4 1
A =/aT {z(az.l..Tz_) X al+Tl+t‘&) + z(az+:lvz)% % arc (tang. —

Va’-{-T?} }.
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Cor. 1. For a polygon of n sides, these expressions must
be multiplied by e as usual; and when m is greater than g,
A = enfaTo (a,m, T, rT), if in this we make # infinitely
great and r infinitely small, it ought to enter into the general
case of the attraction of a circle given in Cor. 1, to the first
part of the lemma: and in fact we get

! m—2 (m—=2) (m—4) '
A = {m-—l + (m—1( (m_.3) + (m—l) (m__3) m___s) +‘.n..‘,.....u +

(rﬁ—z) (m—4) o (Mm—=2) (M==4) vevees 3 2narTT .

(m—1) (Mm=3) wcres + (M 1) (M=3) ceresrns z} X(/‘(az_l_l'vz)m—‘-l or, be

cause the quantity between the brackets is plainly equal to umty,

becomes A = f 2 TTm iz which is the same form as was
(a1v+ Ta.)

found before for the general case.

Cor. 2. When r becomes infinite, and the triangle rmv is
changed into an infinitely extended rectangle, we have for its
attraction

A = 3.5:7 eecivenes (M—=2) axT
2440 ceoierirs (Mem1) z(a’+'1’=)_l}.’

E . anT
except when m = 1, in which case, A = J' e

Scholium.

This lemma has been treated on the supposition that the
density is the same at every part of the triangle rmv, fig. 1;
but there are other hypotheses which render the solution
easier : for instance, we may conceive the density of a particle
at q to be as its distance (¢) from the line rm, in which case

— i aTtt — —aTl
ff ‘+T’+t=)"-'°;‘l‘~ _J‘{(m :)(a’-|-1’z+t*)""1 +

e
- (m=1) (a‘+«T’)m-E-3-

Qqe
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where ¢ must be made 77 or y' accordingly as the action of a
triangle or rectangle is required.

From this simple case, we may not only arrive at some
curious results, connected with the particular hypothesis of
density, but may find with equal ease the figure of a homoge-
neows solid of revolution of greatest attraction, as will just now
be seen.

If the density was to be a function of « and T only, it would
be sufficient to multiply the values found in the lemma, by
that function, see lemama 1.

Prop. g5.

Let Prop. 81 be again proposed, but with this difference,
that the force is inversely as the mth power of the distance,
and that the density of any particle of the cylinder is as its
distance (¢) from that middle section (parallel to the ends of
the cylinder) which passes through the attracted point.

In the expression we just now found, in the preceding scho=
lium, put 2 for a, and & (half the length of the cylinder) for ¢.
The action of the cylinder is v

—xxl axl .
A= 4‘/“/1 {(m—x)(x2+'r2+d*)ﬁ§i + (m—u)(zzwz)’”“‘} ’
its quantity of matter is 4, [[/% Tt = 2[f%T1*; so that we have,
for the equation of the curve bound’mg the base,

x
— — -+ Cd’=o.
(4= (@Y

Cor. 1. When d is infinitely smaH this becomes

m--1
Cd*, or — C' =o.
2 (xz_‘_ ,,)m+1 + ( _|_ 2 m+‘ +

Let ¢ be the value of x when y = o, then C'= — —; and
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the equation of the curve, bounding the plane of greatest attrac-
tion, is
m-1
a"r = (" )2 >

which is exactly the same result as that obtained by Mr. PLay-
FAIR, p. 203, on the supposition of homogenerty ; and this was
* to be expected ; for, though a certain condition of the density
of the cylinder entered into the foregoing problem, yet when
d vanishes, and the solid becomes a plane, we must evidently
obtain the same result as if it had been arrived at by suppos-
ing the cylinder homogeneous ; which in fact it will be when
the length is evanescent.

Nor is this observation to be confined to that particular case
‘when the density is as ¢: if we had solved the problem on the
supposition of any function of z, T, and ¢, for the density, it is
easy to see that though different functions will give different
results when d is finite, yet when the solid becomes a plane,
and d = o, the equation will always be reduced to

a"r = (z* +y')’”i;b

Hence we may conclude, that, the solid of revolution which
shall exercise the greatest altraction on a point in its axis, when
the force is inversely as the mth power of the distance, and the den-
sity either uniform, or any function whatever of x and T (T being
the perpendicular let fall from any particle to the axis of the solid,
and x the distance between the foot of that perpendicular and the
attracted point) wzll have, for the equation of its genemtmg curve,

amr = (2 4y )“a".
Cor. 2. Nothing can be learned from the equation

X
Cd=o0
(= +y )"““ 4y +d‘)”““ + ’
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when m == 1. The curve is then transcendent, and has for its
cquation zL . (20 4 3* + d*) — zL. (24 »*) + Cd = o.
Cor. 3. If the cylinder becomes infinitely long, (m being
positive and greater than unity ) the equation of its base is
. +4 C'=o0;

ot

(x“"y‘)-.—

let a be the value of x when y =0 ; then C'= %_‘—e, and the

equation becomes-

X 1
— == 0.
P e

. . . . 2
If m = ¢, as in the case of nature, this becomes —=

P
so that the infinitely long cylinder of greatest attraction z:zyll be an
infinitely long rectangle, with ils edge turned to the attracted
point. o

If m = g, we have axr = 2" 4- 3, the equation of a circle
with the attracted point in its circumference.
If m == 4, the equation is a*z = (2° 4 »*), which is Mr,
PLAYFAIR’S curve of equal attraction.
If we want the figure of the infinite cylinder of greatest
~ attraction, when m == 1, we must have recourse to the last
corollary ; where we found
zZL(z* 4y +d)—a2L(r4y)=C.
This, when d is infinite gives 2L .d*= C’, or, z = const., the
equation of a plane perpendicular to the azis of x. |
- Cor. 4. If we would solve Proposition g4, but with this dif-
ference, that the force is now inversely as the mth power of
the distance, and the density, in the generating rectangle uvvu,
fig. 15, is, at any point, as its distance from rm or y; we need

“only put f (z) (given by the nature of the curve pr) for d, in

the equation here found, and we get that of pr, in the case of

=1,
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greatest attraction ; viz.

X X

e I~

— Cf(x

Prop. g6.

To solve Prop. g2, the force being supposed inversely as
the mth power of the distance, and the generating polygon
being composed of triangles having such a law of density as
that in the scholium to lemma g.

By using the value found in that scholium, and proceeding,
in other respects, as in the similar propositions already given,
we find, for the equation of the curve touching the sides of
the polygon,

x x*

Ciyr = 0.

(xz_l_yz)ms (.Z‘"-}- (l-[-r) 3,)7”—-1 + .y

Prop. g7.

Let P?OP g2 be yet once more resolved, on the supposition

‘that the force is inversely as the mth power of the distance;

and the density, in the triangles forming the generating poly-
gon, either uniform, or as any function of x and T.

If we make use of the first value of A in lemma g, we get,
for the equation of the curve touching the sides of the polygon,
: 7y s
{1—(2—m) ;i + (2=m) (4=m)

xz
(zz_l_ya.) (x”-{— (‘+rz)yz)”j_’g;‘_

r“_Z‘*___ __ .
i =t kO =0

When r == o, or the polygon becomes a circle, this equation is

reduced to E—-—-—;)-;n—; -~ C =0, as was found in another man-
X

ner, in Cor. 1, Prop. g5.



800 Mr, Kn1auv on the Attraction of such Solids

If » is finite, the above expression will terminate when m is
a whole positive even number ; and consequently the guiding
‘curve will then be algebraic. But, if  be amongst the num-
bers 5, 7, 9, 11, &c., we must use the other expression found
in the lemma, and there arises, for the guiding curve, the
transcendent equation

xe (x,m,y,1y) - Cry == o,

If m = 1, the equation is

x
vars X A (tang. == 77;;—) -+ Cry == 0 and, finally,
when m = g,

&

Py NPT (I+f*)yz+(t*w

7y are (tang ==

a+y)+ccv

In like mauner, might be solved Prop. 31 and 84, the force and
density being as in Lemma g, but this I leave to the reader,

Prop. 38.

The force being inversely as the mth power of the distance
(where m is any whole positive number), and the density
either uniform or any function of z and T,* the base of the
infinitely long cylinder of greatest aitraction has, for its
equation,

o ﬂ’z)z 4+ C==0;

for it will appear from lemma g, and its coroliaries, that,
whether 7 be odd or even (that is to say when it is any num-
ber in the series 1, 2, 8, 4, 5, &c. ), the attraction of an infinite
cylinder will be of the form

* What this means with respect to a cylinder, is shewn at the end of the scholium
to Prop. 33; and with respect to a solid of revolution in Prop. 33.
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A=D f f ff-(-””-—zl-q-f, D being a function of 7 ;

(@4T)7
hence the truth of the proposition is manifest. And because
the equation of the curve generating the solid of revolution of
greatest attraction (on the same hypotheses‘ of force and den-

+1 -+ C =0, we have the

sity ) has been shewn to be
(«r‘+y2)

following remarkable

Theorem.

m being any whole positive number, and the density either uni-
Jorm or as any function of x and T, the same curve which, by
revolving, generates the solid of revolution of greatest atiraction,
when the force is inversely as the mth power, shall be the base of
the infinitely long cylinder of greatest attraction, when the force is
inversely as the (m <= 1th) power.

Numberless other interesting questions might be proposed,
relating to solids of greatest attraction ; for instance, we may
inquire what must be the curve bounding the base of a cy-
linder of given mass and length so that it shall exercise the
greatest action in a direction parallel to its axis.

But as this kind of inquiry proceeds exactly in the same way
as the other (only we must use the attraction B, instead of A,
in Prop. 1), it is unnecessary to lengthen a paper which has
already been extended too far.

MDCCCXII. Rr
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APPENDIX TO §. III.

Of the Attraction of an infinitely long Prism, whose Base is any
right lined Figure whatever.

Prop. A.

Let the rectangle b’ c'c, fig. 20, be the section or base of
a prism, infinitely extended on both sides of it, and let the line
psu bisect the opposite sides bb’, cc’ of the rectangle.

It is required to find the attraction of the infinitely long
solid, on the point p, in the direction psu.

Let C be the centre of the rectangle, put £ = sC, a = bs,
# = pC; draw rm perpendicular to sCu, and put z = Cm.
Now it appears, from Cor. 2, Prop. 1 of the paper { putting A
for the required attraction) that

=

== 4T arc (tang. = m) — 4fx arc (tang == ) the last

term of which is 4 f o

A= 4.]13?5 x arc (tang. = —) = 4 [ % arc (tang

axx
e Putufr=x, X=X =%

—u, and it becomes 4 Si%f;’%f’ which is gaL. (a* 4 2*)3
— 4u arc (tang. = -E—) so that

_‘;x) — 4u arc (tang. = ) -+ 4aL.
(a+(u+x))z,orA_..4(x+u)arc(tan u+x)—
our - 4al.. (a" 4 (v 4+ z)*)z,

which fluent being taken from z = — % to x = £ gives

A =4 (4 k) arc (tang. = u—%ﬁ) — 4 (u —-]e) arc (tang. ==
;:__k) + 4aL. (@ + (u 4 #*)} — gaL.. (@™ (u— k)i

== AX arc (tang =
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If we choose to express this by the lines and angles of the
figure (20), it is
A = 4 x pu x arc, cpu — 4 x Ps x arc, bps 4 4 x bs XL;%:'

Prop. B.

Let the section of the prism be an isosceles triangle; the
attracted point p being in the line psm (fig. 21), which passes
through the vertex s to the middle of the base r'p’.

Draw rin parallel to the base and put r = tang. rsm; call
ps, #; sm, 23 then rm = rz; and we have for the attractx‘on'
of the infinite solid ’

A = 4 /% arc (tang. = -—rf—) = 4z arc (tang. = ._ff_) _

Ut utx
rr
’ (-——-—"'H) : the last term is f mEQin et
o + ( - )“ | Y “arorre T T
utx
ruxx . TUxXx . 4
4‘f(u+x)"+rx - 4'n/u+’7ux+(x+r2)x"_'-_ 14 7*

ruxi ruxrx —
T ur ¢
+’z+ ‘+”x+x /f(x+!+r) +(l+r*}

4 rULE u
- +rtf T 1f we put z == ——. Make, moreover x -~ «

— — . : 4 WrUZ — rua) %
=%, X =% —a, x =%, and it becomes — 1+rz./ T
which ﬂuent is

— {mL V'Z -1z — u arc (tang. _‘_)}’

1+r"
we have then at length

A == 47 arc (tang. = —— ) —

U+ X
arc (tang. == f;";—“) } - cor.
Cor. If the position of the attracting solid be reversed, as in
fig. 22, call ps,, and the attraction will be given by the same
formula; only the fluent (if it begin at the point) must now
Rre

1+r2{mL V(z ey Fra—u
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be taken from o to — z, instead of from o to z. A being a
function of r, x, and u, may be represented by 2¢ (7, x,u). To
correct the fluent, let sm (fig. 2g) = X, sm’== z, then, the
attraction of the solid, whose base is the quadrilateral figure
prr's’, will be e (r,x,u) — 20 (r, X, u).

In figure 24, call ps, #; sm,X; sm’, 2. The action of the
solid, whose base is prr'p, is expressed by e (r,—x,u) — 2¢
(r,—X, u).

In fig. 25, put ps =u, ps’=u', sm = s'm =z, tang. of
rsm = r: the attraction of the solid, whose base is the rhom-
bus srs’p, on a point p in the produced diameter of the section,

is eq (1, 2,u) — 2¢ (r,0,u) 4 20 (r,— x,u') — 2¢ (v, — o0, u').

Prop. C.

Let fig. 26 represent the base or section of an infinitely
long prism, and let this base be any right lined figure what-
ever, regular or irregular : from p, a point in the same plane,
draw any line pq, cutting the base at s and m'”. It is required
to find the action of the solid on the point p, in the direc-
tion pq.

From the angles r, 1/, v, r'’, &c. of the base, let fall the
perpendiculars rm, r'm’, rm", r"’m'”’, &c. on the line pg.
Prolong the sides of the polygon till they meet pq at the
points s, s’, s", ", &c.

Put u == ps, u' = ps’, u" = ps", " = ps"’, &c. ; and

2'==s'm’ " = s"m" z'" = s"'m" | &
T {X': s’'m }’ {X”_—-— s”"m’ }’ {X”’::: s"'m" |’ ©
Also, let r = tang. rsm, r' = tang. 1’s'm’, r" = tang. r"s"m",
" = tang. r"'s""m", &c. then it appears from the last pro-
position, that the attraction, of the upper half of the solid, is
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expressed by
oe(r, z ,u)—o¢(r, o ,u)

o (r, o, )—0e(r, X ,u)

+ ? (rll , x//, u” ) ® (7‘” X , u" )

+ o (,JII’___ .22”' lu) ® (7"" X'”, un/)

-+ &ec. —_ &e.
And in the same manner is found the attraction of the lower
portion. If any part of the polygon, as g, is parallel to pq,
the attraction of that portion of the solid may be found by

Prop. A

Scholium to Prop. 25, page 243.

The following expression includes the attraction (on a point
at the pole or vertex) of all this class of solids, where the
generating plane is a regular polygon, and guiding curve a
conic section: or where V=" (Br -4 qa").

A——2n(x+ 1+ )arc(tang —————\//.cx-}-vx)-—-{(n__g)

x+,'f;} + o
in which w = g2* (1 4-7*), v=1 + 9" (1+r’) and

2nrfa?
0= _nr o ( r + \/;x—zl_ 1) or = _imf_u arc
b4

Vo (14942)

. Vi . . .o .
(sine == V}T)’ accordmgly as y 1s positive or negative,

Ezx. 1. Let y==0, 2 =1, y = Bz ; in which case the solid is
the polygonal parabolic conoid treated of in the proposition
and we have p =g (1+4-7°), v == 1, whence
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A =on (x4 ) arc (tang.== 3—\/[3(1-{-7” x+x’)—{(n-—2)
x -}-nﬁ}w + oanL (———-—-——-— -+ \/B(x-w) ~- 1)

VE(4r*)
the same as was found before.

] . bz bz
Er.e. Letd'=—, f=a,y= —1,)'= — (axr —2*):

here the curve pr, fig. 15, is an ellipsis whose diameters are
a and b, a being that which coincides with the axis pm. We

. . b 2%
have, in this case, p = — (1 47"), v==1— —z—, (14-7), and
the attraction of a polygonal spheroid, on a point at its pole, is

A=on(z} af )arc (tang. = \/ (14r) x4 (1——(1+7’))x’)
{(71—2)$+ bz}'ﬂ'—}'q”
2nra®b* L {‘/ {az__, (147 bz}%

where ¢ = TP vas b Va4

\/{a"— (I+r")b"}x + 1}’ or

b*a (141%)

2nra®bh?* . \/ % (+ r‘) roe } x)
’

= @ v bea arc (sine == ba (1417
2%
accordingly as f;)—z is greater or less than 1 - 7% or as - is

b
greater or less than the secant of half the angle formed at the

centre of the generating polygon by one of its sides.
When x =a, the first arc in the above expression becomes

simply arc (tang. = ) ( 2’2) =, and we have for the action

of the whole solid, A = — Zi—‘f[——b, 7, Y representing ¢ after a
has been put for .

In like manner, may the action of the solid be found when
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the guiding curve is an hyperbola ; the only difference between
that case, and the one we have just considered, being in the
value of ¢, which must be taken 4 1 instead of — 1.

Scholium to Cor. 3, Prop. 2%, page 248.

If the variable rectangle is given iz species, and the touching
curves are conic sections ; that is, if

y=a (fz + 92*), y" = o" (Bz 4 y2*),
we shall have, for the action of the generated solid, on a point
at its vertex by Prop. 4,

A =4 fx arc (tang. = ;—';s/x°+ (147) a2 (B 4 92%)) =+
4f% arc (tang. = VT F (1 + ") " (pz + 92°)) — 277,

where r = i, r’ == —; and by actually taking the fluent,

A= 4.(x+ )arc(tang—-—-\/y.m+vx)——l+wzvr+<p
+4’(x+7¥7’7) arc(tang..,—:-—r\/,.ax-}-yx)-—;—_%;mr-}.cp

— 7z, where p = Bz* (14-7°), v =1 4 qa* (14-1*), p“,@o/’

(147"), " =149" (1 +7°),

o = =40 ( ”’+\/ +1) or = —=i= = arc

vy (14v4?) y(l-}-'yw)_

according as » is positive or negative,

r’ﬁw"‘ L ( ,‘/;G . 47'Ba’
== — — 1 ol = ———m——— arc¢
¢ . v (T4ye®) - W + “ + ), vV — (14 ya?)
. ‘V--v’.z‘ s o, .
(Slne == = ) as v’ 1S posmve or negatlve.
v €

If, in the preceding expression, we make 7 and ' infinite,
and 7' = o, it is reduced to
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A= 4($+:+ )arc(tang—-——-v'ﬁx+<yx) 1+W )

, 48 '\/ryx) e 4B
where ¢ = —= = 4 1), or = —F——
=T A + ) )’ v —y (14v2%)

ey

arc (Sine =

__[;_’”) as v or ¢ is positive or negative.

This is the action of an infinitely long cylinder on a point at the
vertex of its lramsverse section, the equation of the sazd seclion

being y* = oa* (Bx 4 y2*).
Ez. If the base, or transverse section, is an ellipsis, or if

bz bz
y'= — (ax—21’), we have o* = — B=a,9=—1; and

A=4(x+£:q) arc (tang; b\/ax 27 4 A 4"[’

. vV zab®
sine == 7;)-— G T When & = a4, this expression is
g a
reduced to
. 2ab
A=

Scholium to Cor, 2, Prop. g0, page 281..

If we would have a general expression for the attraction of
such solids as the one we considered in the proposition, when
the guiding curve is any conic section, or when
¥ =a* (Bx 4 ¢x*), there arises at first (from the formula for
the action of a rhombus)

A = 4% arc (tang. -——s/x'+ (147)a" (x4 92*)) -

4.f% arc (tang, = ,7; Vo4 (147") e (fx+92°)) — 27z,
and by actually taking the fluent '

A=y (z l—_f:%;){arc (tang. = ;E—c Vur + vx*) 4 arc
T LT Ba ’
(tang. = - VWz +72) | — (£ 4 22) r b0 + @,
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where = e (141°), v= 19 (14 1°), W= (14 7),
V=14 g (147"),

4rBa? L (V T \/ % 47Pa? )
= — = — 4 1), Or == = ¢
¢ vy (1492%) V. P + “ + )’ » V oy (14y2*) ar
: v as v is positi i
(sine = __"_x) as v is positive or negative,

v

’ 4r'Ba® L (\/ vz v
o e— = + - + 1), OF ==
¢ v (14ya?) f‘/;&' ¥ )’ :
V-—-"x

(sine —==7) as /' is positive or negative,

[

47" Ba."

Ve (1hya?)

€2}
/]
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